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Abstract

Data from FDA’s nozzle challenge–a study to assess the suitability of simulating fluid flow in an idealized medical device–is
used to validate the simulations obtained from a numerical, finite-differences code. Various physiological indicators are
computed and compared with experimental data from three different laboratories, getting a very good agreement. Special
care is taken with the derivation of blood damage (hemolysis). The paper is focused on the laminar regime, in order to
investigate non-Newtonian effects (non-constant fluid viscosity). The code can deal with these effects with just a small extra
computational cost, improving Newtonian estimations up to a ten percent. The relevance of non-Newtonian effects for
hemolysis parameters is discussed.
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Introduction

Computational Fluid Dynamics (CFD) is commonly used by

engineering teams in the design and development of many

cardiovascular medical devices. However, its applicability for both

demonstrating device safety and predicting potential problems

based on patient-specific data is still very limited. In most cases, the

efficacy of these techniques has not been fully proven.

The main reason inhibiting the use of computational methods

for such purposes within a regulatory review is the lack of reliable

standarized methods. In order to meet this need, the U.S. Food

and Drug Administration (FDA) recently completed a computa-

tional interlaboratory study [1] to determine the suitability and

methodology for simulating fluid flow in an idealized medical

device. In particular, the goal of the FDA’s challenge was to

establish a set of experimentally validated benchmark computa-

tional models applicable to cardiovascular medical devices. As the

FDA’s challenge article [1] states: ‘‘It is imperative to undertake

and openly publish high quality validation cases relevant to the

biomedical community (for both fluid dynamics and blood

damage) to help improve the quality of biomedical CFD

simulations’’.

The FDA’s CFD challenge covers a whole range of Reynolds

numbers, involving different physiological scenarios and moments

of the cardiac cycle. This paper focuses on the low Reynolds

(laminar) regime. We intend to contribute to the question of

whether in such regime the simpler Newtonian models are enough

or if, on the contrary, one must consider non-Newtonian models

from the start. Non-Newtonian models are only potentially

relevant in the laminar regime, as their effects tend to diminish

with increasing Reynolds number.

Different regimes will appear at different moments of the

cardiac cycle and in different locations. Therefore a single code

aiming at simulating full cardiac cycles, or dealing with devices

that create around them different regimes should handle both

turbulent, transitional, and laminar regimes. The development of

such codes is far from trivial. Usually, each regime is targeted with

quite different physical models (variations of the basic Navier-

Stokes equations) and discretization techniques. If, additionally,

non-Newtonian models are an ingredient we need to fit in, the

whole picture is even a bit more complex.

We intend to develop one of such codes, with an incremental

strategy. In this sense, our approach consists in taking as starting

point a Direct Numerical Simulation (DNS) approach for the

laminar regime, with a view to extend later its validity to the

transitional regime by means of either adopting Adaptive Mesh

Refinement (AMR) capabilities or by including models used in

Large Eddy Simulations (LES) when faced with the transition to

turbulence. Our simulation code was automatically generated by

Simflowny [2], a general-purpose platform for the management of

physical models and simulation problems developed by ourselves

at the IAC3.

In this first paper, we address the laminar regime, limiting

ourselves to the proposed Ret~500 case. This allows us to

investigate the role of non-Newtonian effects (non-constant

viscosity). Even if we confirm previous claims [3,4] limiting the

non-Newtonian effect in physiological parameters up to a ten

percent, let us note that our code can incorporate such effects with

virtually no computational cost. In this sense, we could also say

that we are improving the results up to a ten percent without a

significant extra computational cost. On the other hand, our

results point out that even a few percent on the flow variables can

translate into something bigger in crucial parameters, such as

blood damage.
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A side result of this paper is to provide a way of computing

blood damage, both accurate and reliable. A novel analytical

expression setting a lower limit on blood damage in axisymmetric

problems is also given. Using this expression as a reference

level,the role of non-Newtonian effects in blood damage cannot be

disregarded.

This article is organized as follows. In section Materials and

Methods we summarize the main details of the FDA’s CFD

challenge, we describe the physical models we used in CFD

simulations, with details of our implementation, and we discuss the

physiological parameters under consideration, focusing particular-

ly on hemolysis. Section Results and Discussion presents our

results in comparison with the ones collected by the FDA study.

Finally, section Conclusions summarizes our main conclusions.

Materials and Methods

FDA’s Nozzle Challenge
The FDA interlaboratory study [1] considered a simplified,

idealized medical device consisting of a small nozzle, which shares

characteristics of blood-carrying medical devices, such as blood

tubing, hemodialysis sets, catheters, cannulas, syringes and

hypodermic needles. The device was designed to include

accelerating flow, decelerating flow, variations in shear stress

and velocities, and recirculating flow, all of which may be related

to blood damage in medical devices. The model geometry was a

12mm diameter cylindrical nozzle with a 20
0

conical collector and

sudden expansion on either side of a 40mm long, 4mm diameter

throat. Figure 1 schematically represents this geometry.

Three laboratories generated experimental validation data on

geometrically similar physical models using particle image

velocimetry (PIV) techniques. Concurrently, twenty-eight groups

from around the world submitted simulation results for five flow

rates, spanning laminar, transitional and turbulent flows. The

simulations showed considerable variation from each other and

from experiments. Both experimental and submitted CFD results

are available at https://fdacfd.nci.nih.gov/.

Data available from the experimental data sets are: (a)

distributions along the nozzle’s centerline of pressure, axial

velocity and Reynolds stress; (b) profiles along radial cuts at

different positions of the nozzle of axial velocity, radial velocity,

shear stress and Reynolds stress; (c) wall distribution pressure and

Wall Shear Stress (WSS); and (d) jet width along the centerline.

Shear rates were indirectly calculated from the velocity field

(assuming some viscosity model) and pressures were also measured

in a separate acrylic model manufactured with wall pressure taps

along the length of the nozzle.

Five different flow rates were proposed, corresponding to throat

Reynolds numbers of Ret~{500, 2000, 3500, 5000, 6500},

spanning from the laminar regime to turbulence, including

transitional flows. In this article, we will focus on the lowest

Ret~500, corresponding to a laminar regime, in which DNS

techniques are applicable and also where lower shear rates are

found and therefore non-Newtonian effects become more relevant.

The DNS approach minimizes the role of phenomenological

assumptions, and therefore decreases the risk that a conclusion on

the relevance of non-Newtonian effects on blood damaged is

affected by errors due to these approximations. This throat

Reynolds number represents [1] an inlet Reynolds number of

Rein~167, which corresponds to a flow rate of

Qin~5:21|10{6m3=s.

Numerical Scheme
The model we use in order to characterize the hemodynamics in

the FDA’s scenario is given by the Navier-Stokes equations [5,6], a

set of PDEs for the time evolution of density, r, and linear

momentum, r~uu, fields.

Continuity equation:

Lr

Lt
z+:(r~uu)~0; ð1Þ

Momentum equation:

L(r~uu)

Lt
z+: r~uu~uuð Þ~{+Pz+: m +~uuz(+~uu)T

� �� �

{
2

3
+ m +:~uuð Þ½ �zr~ff ,

where ~uu is the velocity field, P the hydrodynamic pressure, ~ff an

external force, m the viscosity coefficient, and superscript ‘T’

means (matrix) transpose. Equations (1) and (2) describe

compressible, viscous (even with non-uniform m) fluids; the only

assumption we made is neglecting the bulk viscous term [6].

In comparison with the simpler Euler equations for ideal fluids,

Navier-Stokes equations add the possibility of including the

viscosity of the fluid. In the particular case of hemodynamics,

viscosity plays an important role; moreover, the viscosity

coefficient cannot always be assumed to be constant, as blood

actually has a non-Newtonian behavior.

In addition to the Navier-Stokes evolution equations, one must

also provide the equation of state that relates the pressure with the

remaining fields. In many CFD blood flow simulations, the

incompressible fluid approximation is adopted, converting the

conservation of mass (evolution) equation, Eq. (1), into a constraint

equation. The equation of state makes no sense in this approach,

Figure 1. Nozzle geometrical specifications defined in the FDA CFD challenge.
doi:10.1371/journal.pone.0092638.g001
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but still one must provide a prescription for the pressure

distribution. We will rather adopt a different strategy by

considering a slightly compressible model of blood [7] –all that

is required is to choose a speed of sound large enough for the

density fluctuations to be negligible.

The physical scenario consists in a laminar fluid through an

axisymmetric nozzle. Using cylindrical coordinates, axial symme-

try can be invoked for reducing the number of required variables,

by neglecting any angular dependency. All field dependencies are

then written in terms of radial and axial coordinates, fr,zg, and

vectors are decomposed into components in such two directions.

This 2D simulation misses some features of the 3D one, such as

asymmetric flow instabilities, but allows a much efficient use of

computational resources.

In order to numerically solve the evolution equations, we

discretize them over a regular mesh and use finite-difference

methods to compute spatial derivatives. In particular, we have

used a high-resolution finite-difference scheme based on the

Osher-Chakrabarthy family of linear flux-modification schemes

[8,9], combining a 7th order algorithm in the fluid interior cells

with a 3rd order method near the boundaries. The numerical code

used to perform our simulations was automatically generated by

Simflowny [2], a general-purpose platform for the management of

physical models and simulation problems developed at the IAC3.

The resulting code is written in C++ and built over an extensible

simulation framework, SAMRAI [10], which allows for paralle-

lization on distributed-memory clusters and adds the possibility of

using AMR. The results presented in this article correspond to a

relatively low Reynolds number, Ret~500, so they didn’t require

such AMR capabilities. We obtained them by running on a small

size, 32-CPU, computer cluster. A convergence test, checking

mass conservation, is presented in Appendix S1.

Our code implements non-reflecting characteristic inflow and

outflow boundary conditions [11]. Outflow conditions require to

set a reference pressure value (or density, through the equation of

state), e.g. P0, that would correspond to the arterial pressure of the

patient in case of implanted medical devices, leaving free (fixed by

the evolution itself) the velocity values. Reciprocally, inflow

conditions require to set an inflow velocity instead of pressure or

density values. In our simulation, the inflow boundary is

considered to be far enough from the conical collector and throat

regions so that an inlet Poiseuille flow can be assumed. This is,

uz(r)~u0 1{
r2

R2

� �
; ur(r)~0 : ð2Þ

where fuz,urg are the cylindrical velocity components, R is the

radius and u0 is the axial velocity at the nozzle centerline. The

latter can be easily related to the incoming volumetric flow rate by

integrating the axial velocity field over the transverse section (see

Eq. (6)), resulting into Qin~u0
pR2

2
.

Equation of State: Slightly Compressible Blood
For the purposes of physiological modelling, it is very important

to obtain the pressure distribution. In many hemodynamic

simulations, blood is assumed to be an ideal incompressible fluid,

which replaces the (dynamic) continuity equation by a kinematic

constraint on the velocity field, besides decoupling density and

pressure (no equation of state required). This simplifies the set of

evolution equations; however, it adds the difficulty of obtaining

the pressure profile [12], especially when working with

finite-difference or finite-volume methods, which require the use

of ad-hoc implicit algorithms such as SIMPLE [13] or PISO [14].

An alternative approach is to consider slightly compressible

fluids, where one may use the continuity equation to determine the

density, and the pressure is calculated from an equation of state.

All what is required is that the speed of sound is large enough for

the density fluctuations to be negligible. Notice, for instance

considering equation of state (3), that density fluctuations

Dr^
DP

c2
0

, with DP being pressure variations due to actual

gradients. The equation of state most frequently used is due to

[7], which is also the equation of state used in most Smoothed

Particle Hydrodynamics (SPH) applications [15]:

P~P0z
r0c2

0

c

r

r0

� 	c

{1

� �
: ð3Þ

The previous equation is characterized by four parameters: a

reference pressure, P0, the fluid’s density, r0, the speed of sound c0

at that reference pressure and the adiabatic index c~7. In our

case, following FDA’s specifications, blood is modelled with

r0~1056kg=m3. Results are independent of the value of the

reference pressure (what really matters is the pressure gradient),

but anyway the selected value is P0~1200Pa. Finally, we have

checked that, al least for this particular problem, using a reduced

sound speed c0~110|umax gives the same results as using the (much

higher) actual value; in particular we routinely use c0^9:2m=s.

The numerical stability of our explicit finite-difference scheme

would force us to reduce dramatically the size of the time step if we

took the real value, resulting in a prohibitively long simulation

time without actually changing the outcome results in a significant

way.

With this blood model, the resulting fluid is just slightly

compressible. Indeed, we have observed that the resulting density

fluctuations are actually smaller than 0:1%. On the other hand,

the benefits are that pressure values are obtained directly as an

evolution field. The slightly compressible fluid model requires the

use of non-reflecting boundary conditions, otherwise any small

shock wave originated even at the early stages of the evolution (for

instance, due to the initial conditions) will not leave the

computational domain, distorting the whole simulation after a

short time. Such non-reflecting boundary conditions are obtained

by making use of the characteristic decomposition of the evolution

equations, in particular, by treating differently the incoming and

outgoing information through the boundaries [11].

Newtonian vs Non-Newtonian Rheological Models
Blood is a complex fluid [16]. Although it is frequently modelled

as water-like (as an incompressible Newtonian fluid), it is more

properly described as a pseudoplastic (as lava, ketchup or paint)

when non-Newtonian effects are properly taken into account [17].

Actually the study of rheological properties of blood is still subject

to rapid advance, particularly regarding its in-vivo properties.

Carreau-Yasuda viscosity model. A realistic and quite

simple model of non-Newtonian effects on blood viscosity is the

Carreau-Yasuda (CY) model. This model takes into account the

rise of blood viscosity at low shear rates, including a smooth

transition function between the high viscosity value at low shear

rates and the low one at high shear rates [17]. In particular, the

viscosity model reads as follows:

Non-Newtonian Fluid Effects and Blood Damage
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m~m?z(m0{m?) 1z kj _ccjð Þa½ �
n{1

a
, ð4Þ

where j _ccj~
ffiffiffiffiffiffiffiffiffiffiffiffi
1

2
_ccij _ccij

r
is the effective shear rate; _ccij~ LiujzLjui

� �
is

the shear rate tensor, ui being the velocity field; m0 and m? are the

viscosities at zero and infinity shear rates; and fk,n,ag are constant

parameters. Using calibrated results for blood from [18], we have

that: m0~0:16 Pa:s, m?~0:0035 Pa:s, k~8:2s, a~0:64, and

n~0:2128.

Actually, the Newtonian approximation consists in using a

constant viscosity value, equal to m?~0:0035 Pa:s. Figure 2 plots

blood viscosity as a function of the effective shear rate using the

different rheological models considered in this article.

Casson viscosity model. Another widely used alternative to

describe the non-Newtonian behavior of blood is the Casson

model. In this model the apparent viscosity is given by [17]:

m~
1

j _ccj k0zk1

ffiffiffiffiffi
j _ccj

p� �2

: ð5Þ

The effective shear rate, j _ccj, is the same quantity as previously

defined in the CY subsection. In general, the two parameters

fk0,k1g are functions of the hematocrit count [19]. In this article,

we consider parameter values of k0~0:1937(Pa)1=2 and

k1~0:055(Pa:s)1=2, obtained from [19].

The Casson model fits empirical data quite well for shear rates

of j _ccj *> 1s{1. However, it provides unrealistic (divergent) viscosity

values at very low shear rates (see Figure 2). For these low shear

rates, we have implemented a cutoff model [17] where for values

of j _ccjv1, we utilize the value of m corresponding to _jjcj~1.

Fluid-solid Interaction
We treat walls as a static, non-deformable, rigid body. Fluid

interaction comes through the no-slip condition for viscous fluids,

which states that at a solid boundary, the fluid will have zero

velocity relative to the wall. The density and pressure fields have to

be adjusted accordingly. In particular, we must use the charac-

teristic decomposition of the Navier-Stokes equations in order to

discern between the incoming and outgoing characteristic fields,

and only alter the incoming ones in such a way that the no-slip

condition is being satisfied [20]. This solution is also the one being

used in general fluid-solid interaction, where, additionally, a

balance force between fluid and solid must also be considered.

Relevant Physiological Indicators
Conservation of mass metric. There are some fundamental

conservation laws that CFD simulations should obey, and

conservation of mass is one of them. In case one considers

incompressible flows, the conservation of mass becomes equivalent

to the conservation of volumetric flow rate, Q, which can be

obtained by integrating the velocity over a nozzle transverse

section:

Q~

ð
~uu:ddS~2p

ð
uz rdr , ð6Þ

which applied to a Poiseuille inflow would translate into

Qin~u0
pR2

2
.

Figure 2. Curves: blood viscosity values as a function of the effective shear rate for different rheological models. Histogram: actual
distribution of shear rates in the CFD simulation results presented in section Results and Discussion.
doi:10.1371/journal.pone.0092638.g002
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For slightly compressible flows it is more exact to actually

compute the mass flow rate as the transversal integral of r~uu, this is:

_mm~
Ð

r~uu: ~ddS, which for a Poiseuille flow turns out to be.

_mmin~r0u0
pR2

2
: ð7Þ

The mass flow rate is not a medically relevant physiological

indicator ‘per se’ since it is set by the inflow boundary condition.

Nonetheless, it is a very useful indicator of the quality of a CFD

simulation, since it should be conserved along the fluid path.

Pressure drop. Pressure recovery, given in Pascal units or

mm of Hg, provides an indicator of the blood’s energy loss when

going through a valve or a device, both due to the narrowing and

turbulent effects. In cardiac applications, the pressure drop also

indicates the heart’s effort in pumping blood. Pressure drop values

can be measured or obtained in several different and independent

ways:

N At the FDA’s laboratory experiments, pressure values were

measured in a separate acrylic model manufactured with wall

pressure taps along the length of the nozzle.

N From CFD, simulation pressure can be obtained as an

independent field if one is using a slightly compressible model,

like in this article; or from the velocity field if working under

the incompressible assumption.

N Clinically, with real patients, the pressure drop along a valve or

device cannot be directly measured. Instead, physicians make

use of the simplified Bernoulli equation to non-invasively

estimate the pressure drop at the narrowing from velocity

measures obtained using Doppler techniques [21,22]. Ber-

noulli’s principle states that the sum of all forms of mechanical

energy in a fluid is constant along a streamline. This result is

valid under the assumptions of non-viscous, steady flow. The

widely used simplified Bernoulli equation [21] is applied in

these cases along the streamline that follows the centerline of

the artery, assuming that the velocity at the inlet is negligible

compared to the velocity at the valve or device (since it is a

much narrower zone). This results into:

Pdrop^
r

2
u2

peak : ð8Þ

From CFD results, one can also make use of the velocity field in

order to estimate a pressure value, emulating in this way what a

physician would would measure (fluid speed from Doppler data).

Shear stress. The shear stress magnitude, jtj, measured in

units of N=m2~Pa in SI, is defined as.

jtj~m

ffiffiffiffiffiffiffiffiffiffiffiffi
1

2
cijcij

r
~mj _ccj , ð9Þ

where m is the dynamic viscosity, cij~ LjuizLiuj

� �
is the shear rate

tensor and j _ccj is the effective shear rate that appears in non-

Newtonian viscosity models.

Many studies [23–25] highlight the key importance of WSS, the

shear stress jtj at vascular walls, as an indicator of atherosclerosis

and risk of aneurysm development, besides its relevance in terms of

biological processes in blood and arterial walls.

Hemolysis. The normalized index of hemolysis (NIH) is a

measure of the amount of blood damage caused by shear stresses

found in a given flow domain. The NIH is in units of g=100L and

can be computed as.

NIH~100(1{Hct)|D|k ð10Þ

D stands for ‘blood damage’ and it actually represents the

change of hemoglobin content of blood (in the literature,

sometimes it is represented by D:
DHb

Hb
), Hct is the hematocrit

count (40% for this study) and k is the hemoglobin content of

blood (150 g=L for this study). We discuss in the next section how

to compute the blood damage prediction from a CFD physiolog-

ical reconstruction.

Differential Equation Describing the Change in
Hemoglobin Content

The change in hemoglobin content, D:
DHb

Hb
, is computed

from physiological reconstruction. There are several ways of doing

so (see refs. therein [26]), although it is quite extended to use [27]’s

integral expression as starting point in order to derive differential

expressions,

D~3:62|10{7jtj2:416Dt0:785:C jtjbDta ð11Þ

being jtj the shear stress (see Eq. (9)) over a particle (in a

Lagrangian way) and Dt the exposure time.

Following [28]’s notation, in this section we shall work with the

generic fa,b,Cg coefficients, also including a wider family of

integral expressions of the form of Eq. (11). It is clear that

a~0:785, b~2:416 and C~3:62|10{7 in Giersiepen’s model.

Giersiepen’s et al.’s integral expression was derived experimentally

under conditions of constant shear stress. The fact that the

coefficient a is smaller than unity indicates that damage growth is

sublinear in time –a double exposure time translates into less than

factor 2 in the growth of blood damage.

We are interested in computing blood damage in any

physiological situation, and then shear stress is neither uniform

nor constant. In order to do so, a differential form of Eq. (11) must

be obtained. This is, we are interested in deriving an equation of

the form.

dD

dt
~f (D,jtj) ð12Þ

such that if jtj is constant, Eq. (11) is recovered. Notice that the

generic function f (D,jtj) might also explicitly depend on time, t, –

this is, f (D,jtj,t). This approach was adopted, for instance, by ref.

[29]. In section Results and Discussion we compute and discuss

the numerical differences obtained by using this approach.

In order to obtain a differential equation like Eq. (12),

Giersiepen’s Eq. (11) can be first linearized in time and then

differentiated,

dD‘

dt
:

d(D
1
a)

dt
~C1

a jtj
b
a : ð13Þ

Non-Newtonian Fluid Effects and Blood Damage
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This approach was first presented by [30] and usually D‘:D
1
a is

defined as a new quantity, so-called linear damage since it grows

linearly with time. Then, the differential equation for actual blood

damage, D, can be straighforwardly obtained,

dD

dt
~a C1

ajtj
b
a D

a{1
a : ð14Þ

The consequences of the sublinear dependency (av1) of blood

damage with time can be observed in this differential equation: the

exponent of the damage factor appearing at the right-hand-side in

Eq. (14) will be negative, which means that the damage growth

rate decreases the more damaged blood cells are.

Despite Eq. (14) formally being the differential equation for

blood damage, the standard procedure when numerically solving a

differential equation with a negative exponent on the field that is

being integrated, like in our case, is to first perform a change of

variables that would return us to linear damage differential

equation (13). In any case, it is important to remark here that the

linear damage D‘ is just a mathematical auxiliary variable, useful

to integrate along pathlines, but lacking any physical meaning. In

particular, if one wants to compute average damage values, such

average must be performed over the actual blood damage, D,

rather than over the linear one. In Appendix S2 we show

analytically that this potential misunderstanding would lead to

blood damage overestimations of more than 25%.

Including linear damage as an additional evolution field

of the PDEs. One can replace the Lagrangian time derivative in

(13) by its Eulerian form plus an advection term, obtaining a PDE

for the linear damage, namely.

LD‘

Lt
z~uu:+(D‘)~C

1
a jtj

b
a , ð15Þ

where ~uu is the fluid velocity and +(D‘) is the linear damage

gradient.

This allows us to include now the linear damage D‘ as an

additional dynamical field that can be evolved together with the

density and linear momentum, governed by the Navier-Stokes

equations. This equation can also be combined with mass

conservation equation in order to have it rewritten in a

conservative form,

L(rD‘)

Lt
z+: rD‘~uuð Þ~C1

a r jtj
b
a , ð16Þ

where rD‘ will be the conservative field. The full evolution system

is given then by this PDE, plus Eqs. (1)-(2). In section Results and

Discussion, we present and discuss the numerical results.

Blood damage analytical result for axisymmetric

flows. In Appendix S2 we derive an analytical approximation

of the averaged damaged hemoglobin count for a viscous

Newtonian fluid through a known axisymmetric geometry defined

by a single function of the radius along the main axis, R(z).
Allowing for [27]’s coefficients, it results into:

D~5:58|10{8|
m

m?

� 	2:416

|
Qin

cm3=s

� 	1:631

|
I
I0

� 	0:785

, ð17Þ

m being the Newtonian blood viscosity, the constant m? set to

0:0035Pa � , Qin the input volumetric flow rate and

I:
Ð L

0
R(z){7:233dz given by the channel shape assuming R(z),

z and L are in mm, i.e. I0:mm{6:233. This expression can

provide a first approximation (a lower limit, as we shall see in

section Results and Discussion) of the damaged hemoglobin count

of any axisymmetric geometry, only requiring to compute the

integral I , which only depends on the channel geometry and in

most cases can be performed analytically.

Results and Discussion

In this section we aim to discuss the significance and impact of

non-Newtonian blood effects on various relevant physiological

parameters reconstructed from CFD simulations, and also to

validate our DNS code against FDA’s experimental results from

their interlaboratory study [1].

Conservation of Mass Errors
Mass conservation is a fundamental law explicitly included in

the Navier-Stokes equations (see Eq. (1)). Any deviation of the

CFD predicted mass flow rate from the theoretical inlet, _mmin in Eq.

(7), represents a numerical error. For this reason, it is quite

important to monitor the mass flow rate along the nozzle’s

geometry as a key validation indicator of the simulation results.

Figure 3 plots the relative error of the CFD predicted mass flow

rates versus _mmin, as a function of the axial position. We can observe

that mass flow rate remains almost constant for z 0:058m and for

z *
> 0:04m, and there is a mass flow rate loss of ,0:6% in between

these two positions, which corresponds exactly with the conical

collector part of the nozzle’s geometry (see Figure 1).

The reason why most of the conservation of mass errors

concentrate in the conical collector is because it is there where the

nozzle’s shape is harder to fit in a regular orthogonal mesh.

Indeed, we have observed in some other preliminary results that

these errors can be reduced by more than an order of magnitude if

one allows for subcell resolution by working with fractional

volume-of-fluid (VOF) methods [31–33] at each cell. Notice that

mass conservation errors are almost independent of the blood

viscosity model.

It is also worth pointing out that these flow rate errors are just

about a half percent in our case and converge as the mesh is

refined, as discussed in Appendix S1.

Axial Velocity Along Centerline and Radial Cuts Profiles
The axial velocity profile along the centerline is a key indicator

to validate the performance of CFD predictions, on the one hand

because the plot includes information from all the different nozzle

regions, and also because the experimental velocity values were

precisely measured using PIV techniques. Figure 4 plots CFD

predictions of the axial velocity profiles along the centerline for the

three different viscosity models together with the experimental

means and their 68% confidence intervals. Non-Newtonian effects

on the axial velocity are small in the region upstream the sudden

expansion, but they become more significant downstream that

point, in the recirculation zone. The Newtonian model underes-

timates blood viscosity at low shear stress rates, which is the reason

why Newtonian axial velocity is higher than the one obtained with

the other models. The same thing happens when comparing the

CY model with respect to Casson’s. The latter tends to

overestimate the viscosity values at very low shear stress rates

(see Figure 2), and one gets lower axial velocity values as a result

[34,35].

By comparing Newtonian versus CY results, we can see that

non-Newtonian effects induce differences on the axial velocity

which grow up to 10%, being larger in any case than experimental

confidence intervals. Some authors consider than these moderate
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Figure 3. Relative error on mass flow rates, _mm, obtained by integrating the axial velocity profiles (multiplied by the density) at
different positions along the axis.
doi:10.1371/journal.pone.0092638.g003

Figure 4. Axial velocity along the nozzle centerline for the three viscosity models. CFD results (lines) are compared to experimental data
represented by their means and 68% confidence intervals (i.e.: +1s).
doi:10.1371/journal.pone.0092638.g004
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differences would not suggest the need of including non-

Newtonian effects to obtain reliable CFD predictions, even for

these low Reynolds numbers [3,4]. We will rather take this as an

indication of a significant source of errors, which could have

consequences when looking at some physiologically relevant

parameters, as we will see below.

The study of the axial velocity can be completed by plotting this

field along radial cuts at different positions of the nozzle (see

Figure 5). Again, CFD predictions agree very well with exper-

imental results, finding just slight discrepancies in the conical

region. The differences between different viscosity models do not

exceed 10%. The three subplots at the bottom correspond to radial

cuts downstream of the sudden expansion, where some fluid

recirculation (negative axial velocities) can be observed.

Pressure Drop
Another direct measure obtained in the in vitro experiments run

by the laboratories participating in the FDA’s challenge was

pressure along the centerline. This is indeed a very relevant

quantity from the medical point of view, as it is often used to

detect, for instance, aortic valve stenosis. Clinically, with actual

patients, the pressure drop along a valve or device cannot be

directly measured. Instead, physicians make use of the simplified

Bernoulli equation to non-invasively estimate the pressure drop at

the narrowing from velocity measures obtained using Doppler

techniques (see Eq. (8)).

Besides the experimental in vitro measures, we have discussed

several other ways to obtain pressure drop values. From CFD

simulations, pressure can be obtained as an independent field if

one is using a slightly compressible model, like in this article.

Figure 6 plots the pressure drop (with respect to the pressure

value at the inlet) predicted by the CFD simulations using the

three different viscosity models, plus the value obtained from

the simplified Bernoulli equation using peak velocity values, plus

the experimental means with confidence intervals. Notice that the

experimental data suggest a faster recovery of the post-stenotic

pressure, which is not replicated by any of the three models. This

difference can be put in context by noticing that, according to

FDA’s report [1], experimental values of pressure for this

particular Reynolds number (Ret~500) were not reliable (exper-

imental points are plotted in light gray for this reason). Moreover,

our curves are much closer to the experimental points than the

CFD results presented in the FDA report (see Figure 4.a in [1] for

details).

The predicted pressure drop at the sudden expansion is

315:9Pa for the CY viscosity model; 324:9Pa for the Casson

Figure 5. Axial velocity profiles (CFD results and experimental values) along radial cuts at different positions of the nozzle.
doi:10.1371/journal.pone.0092638.g005
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model (a 2:6% overestimation w.r.t. CY); 307:7Pa for the

Newtonian model (a 2:6% underestimation w.r.t. CY) and

284:1{262:5Pa for the simplified Bernoulli equation (a

10:1{16:9% underestimation w.r.t. CY). In light of these results,

for this particular geometry and flow regime, non-Newtonian

effects have a limited effect concerning CFD predicted pressure

values. The non-invasive method to estimate the pressure drop

using the simplified Bernoulli equation has instead more than a

10% underestimation (see ref. [21] for a discussion of the relevance

of this error). Notice that an underestimation of the pressure drop

means that a potential stenosis would be underestimated as well.

Shear Stress Profiles and WSS
It is perhaps in the estimation of shear stress values where a

CFD contribution can be more relevant to the medical and

bioengineering community. This is because, on one hand,

experimental shear stress rates are difficult to obtain. Indeed,

shear rates in the FDA’s interlaboratory experiments were

calculated indirectly from the velocity field (computing numerical

derivatives from experimental points) [1] and then converted to

shear stress values assuming a specific viscosity model (results

depend on the chosen model, see the discussion below). As matter

of fact, experimental errors raise in regions near the wall due to

difficulties in imaging velocities there (see anticipating results in

Figs. 7 and 8). On the other hand, shear stress values provide very

valuable information, which may be used to estimate arterial wall

or valve mechanic stresses, blood damage indicators, calcification

rates, etc.

Figure 7 plots blood shear stress profiles along radial cuts at

different positions along the nozzle from CFD predictions using

the three different viscosity models, and also the experimental

values, obtained in each case by assuming the corresponding

viscosity model. We can see looking at sub-panels (b), (c), and (d),

that shear stress experimental errors substantially increase near the

wall, which turns out to be the region where more critical the data

is regarding estimates of WSS and also where the most important

contributions to the blood damage integral occur. Upstream of the

sudden expansion (sub-panels (a) to (c)), the maximum shear stress

is found near the wall, whereas downstream of that point (sub-

panels (d) to (f)), a recirculation zone is created and is, indeed, at

the transition zone between forward and reverse flow where the

maximum shear stress values are recorded.

Comparing shear stress profiles between different viscosity

models, we can see that more important relative differences seem

to be upstream of the conical region (sub-panels (a) and (b) of

Figure 7), where the slowest and most laminar flow regime occurs.

However, one should notice the different scales in the shear stress

axes to realize that these differences correspond to very low shear

values. Bigger contributions come from the narrow tube and

downstream of the sudden expansion (sub-panels (c) to (f)), where

relative differences are more moderate (,5%) and consistent with

typical values found in the literature [3,4,36].

Figure 8 plots the WSS values along the proximity of the

nozzle’s wall, by calculating the index position of the grid cell the

wall and using the WSS of two grid cells below, in order to

diminish the staircase effect of inclined geometry without affecting

the results. In this figure, one can appreciate even better how the

big experimental errors are recorded in the most crucial regions:

from the conical taper (z^{0:06m) to the sudden expansion

(z~0m), where most of the blood damage is being produced. The

maximum WSS is produced at the transition point between the

conical and narrow regions. It is a point, together with the sudden

Figure 6. CFD predicted pressure drop values along the nozzle centerline for the three different viscosity models (lines), together
with maximum pressure drop value derived from peak velocity value using Bernoulli’s equation (thick dashed horizontal line).
Experimental data are represented in light gray color because of their lack of reliability due to experimental errors, as pointed out in FDA’s report [1].
doi:10.1371/journal.pone.0092638.g006
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expansion, that caused trouble to some of the CFD submissions at

the FDA’s challenge (see Figure 13 of [1]) since it requires a fine

definition of the wall and of its interaction with blood. As it was

written in the previous paragraph, relative differences between the

three viscosity models are larger at low WSS values (e.g. upstream

the conical region, z {0:06m). However the relevant contribu-

tions come from the narrower regions of the nozzle, where relative

differences are ,5% between models; in particular, at a point just

upstream the sudden expansion (z~0{) measured CY’s WSS

values are 4:6% larger than Newtonian and 5:7% smaller than

Casson.

Hemolysis
Analytical approximation. We have proposed an analytical

approximated expression to compute the averaged damaged

hemoglobin for axisymmetric flows, Eq. (17). The full derivation is

provided in Appendix S2, where we assume a Poiseuille flow at

each ‘z’ with constant volumetric flow rate, Qin. This may be in

some cases a rough approximation, but the benefit is that the final

expression only depends on the geometry I , the fluid viscosity m,

and the volumetric inflow rate Qin. For the particular problem

studied in this article, the Newtonian blood viscosity is

m~0:0035 Pa � and the input volumetric flow rate for the

Ret~500 problem, is Qin~5:21 cm3=s. The integral I can be

computed from the geometrical information prescribed by the

FDA, which can be mathematically expressed as a piecewise

function (all distances, R and z, are in mm):

R(z)^

6 if {100v z ƒ{62:68

2{
6{2

62:68{40
(zz40) if {62:68v z ƒ{40

2 if {40v z ƒ0

6 if 0v z ƒ100

8>>>>>>>>><
>>>>>>>>>:

ð18Þ

One gets then from the definition:

Figure 7. Blood shear stress profiles along radial cuts at different positions along the nozzle’s axis. Lines represent CFD predictions and
indirect experimental data is represented by their means and confidence intervals. Since shear stress values obtained from experimental data actually
require to set a viscosity model, here we plot three different experimental data sets (Newtonian, CY and Casson), one for each viscosity model.
doi:10.1371/journal.pone.0092638.g007
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I:
ðL

0

R(z){7:233 dz^0:2783mm{6:233 , ð19Þ

which leads to a damaged hemoglobin count Danalytical^
0:3018|10{6, after applying Eq. (17). Finally, the analytical

lower limit of the averaged NIH can be obtained from Eq. (10),

NIHanalytical^0:00272g=100L : ð20Þ

CFD results and impact of non-Newtonian effects. The

analytical NIH result, Eq. (20), provides a first guess on the

magnitude of hemolysis rates. It is a calculation that does not

require any dynamical information from CFD simulation, only the

geometrical shape and the input flow rate. The purpose of this

subsection is to study the corrections to this guess introduced by

full CFD simulations, using either the Newtonian blood model or

the two non-Newtonian models described in section Materials and

Methods.

NIH results can be obtained from CFD simulations by using

two different approaches:

N First approach: one can take the velocity and shear stress

magnitude fields of the steady solution (the latter can be

computed from spatial derivatives of the former, Eq. (9)) and

integrate the ordinary differential equation for the linear

damage, Eq. (13), along several pathlines (or streamlines, as

they are the same under steady conditions) distributed over a

radial section of the nozzle. Each pathline will accumulate

different linear damage values, which have to be

converted to actual blood damage hemoglobin counts,

D~(D‘)
a~(D‘)

0:785. Then and only then, the different blood

damage values are averaged, weighted with the flow rate at the

seed point of each pathline (i.e. using the same idea as in

Appendix S2), and the averaged NIH is finally computed. The

process of this first approach can be summarized as follows:

f~uu,jtjgstat

Ð
pathline

D‘?D?D?NIH : ð21Þ

N Second approach: one could rather adopt the position suggested

by [30] of including linear damage, D , as an additional

evolution field of the PDEs system. This linear damage field

can be converted to actual blood damage, D, and then to NIH,

which therefore can be represented over the entire domain, as

any other field, displaying the accumulated blood damage of

the particles at every point.

Both approaches are expected to be equivalent if we look at

averaged values, although they are quite different from the data

analysis point of view: the first one can be seen as a post-processing

analysis using the CFD predicted velocity field, whereas in the

second one the blood damage count is already computed within

the PDE evolution system, giving more detailed information on

the damage distribution.

Following the first approach, the averaged NIH values that are

obtained for the three different viscosity models are:

Figure 8. WSS values as a function of the axial position. Lines represent CFD predictions for the three viscosity models considered (using the
same color code as in previous figures), whereas experimental results (indirectly measured from velocity profiles and assuming each of the three
viscosity models studied in this article) are plotted by their mean values and 68% confidence intervals.
doi:10.1371/journal.pone.0092638.g008
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NIHNw ~ 0:00382g=100L ~140%|NIHanalytical

� �
NIHCY ~ 0:00426g=100L ~157%|NIHanalytical

� �
NIHCs ~ 0:00479g=100L ~176%|NIHanalytical

� � ð22Þ

In order to make the NIH field values obtained from the second

approach comparable to these averaged results, one can compute

flow-weighted averages along radial cuts (see Appendix S2),

obtaining NIH(z) curves. Figure 9 plots these averaged NIH

curves obtained from the lineal blood damage count as an extra

field of the evolution PDEs (i.e. the second approach) together with

the reported [see Eqs. (22)] values from the first approach. Both

approaches lead to very similar results, proving that they are

actually equivalent. The analytical lower limit obtained in Eq. (20)

is also plotted in the same figure.

By comparing hemolysis results for the different viscosity

models, we see the same qualitative behaviour as in shear stress

curves. A qualitative conclusion is that Newtonian models tend to

underestimate blood damage counts.

one could argue that NIHNw is only 10% smaller than its non-

since it amounts to assume ‘zero-knowledge’ about the hemolysis

rates in our study, that is NIH~0, instead of using the analytical

lower limit. From this perspective, it turns out that performing a

full CFD simulation corrects the analytical first guess

NIHanalytical^0:00272g=100L to the Newtonian value

NIHNw~0:00382g=100L, this is, a 40% correction. Actually, a

CFD simulation not only provides a more realistic NIH value, but

also full 4D reconstruction of relevant physiological fields, so it is of

course always worth to perform it. Then, including non-

Newtonian effects (which, at least in our implementation, has a

negligible impact on the simulation code performance) adds up

another 17% correction, which represents almost half of the

improvement obtained from NIHanalytical to NIHNw. Schemati-

cally this statement can be represented as follows,

NIHan:

2:72
mg

100L

� � z40%

NIHan:

NIHNw

3:82
mg

100L

� � z17%

NIHan:

NIHCY

4:26
mg

100L

� � : ð23Þ

NIH is the standard clinical index used to report hemolysis.

Also, one of the most interesting potential applications of CFD

simulations in medical devices is the possibility of being able to

quickly evaluate the effect of design changes on device perfor-

mance by resolving localized (in time and space) blood damage

effects [29]. In this context, a 17% difference in NIH predictions

due to the choice of a simplified blood rheological model may be

unacceptable, perhaps making the difference between turning

down a valid design or accepting a too hemolytic one. In this

sense, our results suggest that non-Newtonian viscosity models can

be relevant when trying to obtain reliable hemolysis results from

CFD simulations.

Results using other methods found in the literature. [29]

proposes a different way of computing the change of hemoglobin

content, D. Also starting from [27] integral expression, Eq. (11),

Figure 9. Flux-weighted NIH average values (NIH) using the different viscosity models, together with the analytical lower limit.
Thick curved lines correspond to the values obtained from computing the flow-weighted averages over radial cuts along the main axis using the NIH

evolution field included as a PDE. Thin dashed lines represent the averaged NIH values at outflow given in Eqs. (22), obtained from a post-processing
analysis of the velocity field.
doi:10.1371/journal.pone.0092638.g009
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effects,

because it is an underestimation). However, this conclusion is misleading,

Newtonian (CY) counterpart, an error which could be dismissed (or not,



they derive a differential equation where
dD

dt
explicitly depends on

time, t. In particular,

dD

dt

� �
Arora et al:

~2:8417|10{7jtj2:416Dt{0:215 : ð24Þ

Notice that this means that the growth rate of blood damage

depends on the time origin choice, no matter what damage and

shear stresses blood cells underwent in the past. Once a time origin

is set, it can be applied to the results of the problem (in the steady

regime in order to obtain a numerical result for the average NIH

which can be compared with CY’s Eq. (22):

NIH~0:00426g=100L [here CY model is also being used],

NIHArora et al:~0:00235g=100L ~55%|NIH
� �

: ð25Þ

The value obtained with this method is almost a factor 2
smaller. This is if the time origin is set at the moment when fluid

particles passed through z~{0:1m. If the initial time was set

before, the resulting value would be even smaller, as the relevant

contributions to blood damage would occur at larger Dt.

At the end of Appendix S2 we discuss the effects of not

transforming back the auxiliary linear blood damage count, D‘, to

actual blood damage, D, just after the integration along pathlines

and always before doing any other calculation such as averaging.

This would mean, instead of proceeding according to the process

pictured in (21), to proceed as follows,

f~uu,jtjgstat

Ð
pathline

D‘?D‘? NIH
� �

from(D‘)a
: ð26Þ

Using CFD predicted velocity fields for the CY model, one can

compute averaged NIH value following (26), and obtain.

NIH
� �

from (D‘)a
~0:00540g=100L ~127%|NIH

� �
, ð27Þ

which indeed represents a 27% overestimation, as predicted for

the blood damage (see Appendix S2), since there is a lineal relation

between D and NIH.

Conclusions

We have performed CFD simulations of blood flowing through

an idealized cardiovascular medical device (see Figure 1) for a

throat Reynolds number of Ret~500, and compared against a

recent validation study performed by the FDA [1] based on

experimental data from three independent laboratories and some

CFD submissions from different research groups. Our simulation

code was automatically generated by Simflowny [2], a general-

purpose platform for the management of physical models and

simulation problems developed by ourselves at the IAC3. The

physiological models we used correspond to the Navier-Stokes

equations (see Eqs. (1)-(2)) plus a slightly compressible Equation of

State, Eq. (3), and the possibility of using different non-Newtonian

viscosity models (indeed, we are following the so-called DNS

approach). In particular, we have considered three rheological

models for the blood viscosity: Newtonian, Carreau-Yasuda and

Casson. Also, we have discussed different hemolysis indicators,

deriving an analytical expression that may be used to obtain lower

limits on the blood damage (see Eq. (17)) and implementing the

most realistic indicators within our CFD environment.

We have validated our results against the experimental data

provided by the FDA, obtaining very good agreement. In particular,

such validation has been done (a) against theoretical results, such as

the conservation of mass; (b) against direct experimental results,

such as velocity profiles and pressure drop values; and (c) against

indirect measures, such as blood damage and WSS. This latter

comparison is harder due to experimental measurement difficulties,

specially at the throat, making a point of where CFD predictions can

help in physiological and hemolysis studies.

The observed differences between Newtonian and non-Newto-

nian results in velocity, pressure and shear stress fields can reach up

to a 10%, which is consistent with other results found in the

literature in more realistic geometries [3,4]. Actually, these

moderate differences led the authors of [3] to suggest that there is

no need of including non-Newtonian effects to obtain reliable CFD

predictions. However, our conclusions suggest some relevance when

looking at the hemolysis results (see paragraphs below). In any case,

let us point out that our CFD code can provide this 10%
improvement with no significant computational cost.

Also, we have discussed different ways of computing the change

of hemoglobin content from CFD, a key ingredient to finally obtain

hemolysis indicators, such as NIH. In particular, with steady flows

we have (a) taken the steady solution and integrate (14) along

pathlines and (b) included the linear damage as an additional

evolution field (15) (i.e. defined at each space and time points) and

solved the PDE. We have tested both approaches on the FDA’s

problem finding consistency between them. We have also explored

a third option, consisting in an approximation valid for any

axisymmetric flow that allowed us to obtain an analytical expression

for the average blood damage only as a function of the geometry (eq.

(17)). We also discuss the importance of converting the linear

damage D‘ into the actual blood damage D before averaging.

Otherwise one can get large errors in the average NIH value.

When comparing hemolysis results between Newtonian and non-

Newtonian models, we observed in the Newtonian model a 17%

underestimation of NIH (taking the analytical lower limit NIHanalytical

as a common basis). This represents an adjustment of almost half the

correction that separates an analytical result from the Newtonian

CFD prediction (i.e. the difference that justifies, inter alia, performing

a full CFD simulation, see (23)). Our results indicate that non-

Newtonian effects are actually amplified in blood damage indices.

The work presented in this article represents the first step towards

a more general goal of simulating implanted in-body medical

devices using patient-specific data acquired with CT scans or MRI

techniques in order to obtain morphology and blood fluxes. Our

implementation differs from others found in the literature in

different ways (slightly compressible blood, inclusion of non-Newtonian effects,

non-reflecting characteristic boundary conditions…); hence, following FDA’s

recommendation [1], we have started validating our CFD code

against known experimental results finding successful agreements.

We have also discussed and successfully tested some hemolysis

indicators that shall be used in our future studies. The next steps

towards this direction consists in allowing the walls to move and

start looking at the performance of our DNS implementation at

higher Reynolds numbers, keeping AMR and LES techniques as

possible improvements, to be added when required.

Supporting Information

Figure S1 Convergence of the Mass flow rate using
three resolutions. We plot the mass flow rate for grids with
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resolution ratios (dz,dr),(dz=1:5,dr=1:5) and (dz=2,dr=2). They

correspond to the following (nz,nr) numbers of points:

(840,106),(1260,159) and (1680,212). The solutions converge

with an l2 norm of 4:6. The left axis shows the value of the mass

flow and the right axis shows the relative error with respect to the

theoretical value.

(TIFF)

Figure S2 Convergence of the Wall Shear Stress using
three resolutions. We plot the WSS for grids with the same

resolution ratios as Figure S1. The solutions converge with an l2
norm of 2:9 and a l? norm of 3:8.

(TIFF)

Figure S3 Convergence of the normalized index of
hemolysis using three resolutions. We plot the NIH for

grids with the same resolution ratios as Figure S1. The solutions

converge with an l2 norm of 3.

(TIFF)

Figure S4 Contour lines of blood damage overestima-
tion in the axisymmetric–Poiseuille case if one computes

the average on the linear damage, D‘, instead of first
unlinearizying it. The two axis correspond to the hemolysis

coefficients a and b, the dashed lines representing Giersiepen et al.

values. The plot has been restricted to the sublinear regime, a,1.

(TIFF)
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